
Supplementary Information for:

What makes different people’s representations alike:
neural similarity-space solves the problem of

across-subject fMRI decoding

Rajeev D. S. Raizada1∗ and Andrew C. Connolly2

1Department of Human Development, Cornell University, Ithaca NY 14853.
2Dept. of Psychological & Brain Sciences, Dartmouth College, Hanover NH 03755.

∗To whom correspondence should be addressed: raizada@cornell.edu

Computer code, for easy replication and verification of our analyses

To run the analyses in the main text, download the accompanying code from the Supporting
Information website. It can also be downloaded from
http://dl.dropbox.com/u/700503/RaizadaConnolly SuppInfo code revised.zip

Then download the Haxby data, from http://pymvpa.org/datadb/haxby2001.html

The first set of analyses in the paper use that data without any additional preprocessing (the brain
volumes in the online archive have already been motion-corrected).

To read in the fMRI data and write its similarity matrices to a Matlab-format file, run the Python
script Step1 ReadHaxbyData WriteMatlabSimMatrixSquareforms.py, which uses functions from
PyMVPA (Hanke et al., 2009). Next, to perform the across-subject decoding, run the Matlab script
Step2 AcrossSubjDecoding SimMatrixPermutationMatching.m

Feature-selection, and similarity analyses of the feature-selected voxels

The code for the second set of analyses in the paper can be found in the subdirectory
Spatially normalised analyses.

In order to compare the locations of the selected voxels across different subjects, the brain volumes
were all spatially normalised to the standard MNI152 template at 3x3x3mm resolution using
SPM8, before feature-selection or similarity-analysis was carried out. A batch script to run those
standard preprocessing steps is Step1 split and spatially normalise haxby data.m.

The normalised images are then detrended and written into Matlab-format .mat files by the Python
script Step2 haxby normed data whole brain to mat.py, which uses the whole-brain mask image,
also provided, wholebrain mask haxby space.nii.gz

The feature-selection is performed by the Matlab script
Step3 select wholebrain haxby voxels via Ts and Fs.m.

1

http://dl.dropbox.com/u/700503/RaizadaConnolly_SuppInfo_code_revised.zip
http://pymvpa.org/datadb/haxby2001.html


That script writes as output the similarity matrices derived from the selected voxels, for each
subject: haxby wholebrain selected voxels sims.mat

Those similarity matrices then serve as input for the across-subject decoding script:
Step4 AcrossSubjDecoding using selected voxels sims.m
That script is exactly the same as the one above from the first analysis,
Step2 AcrossSubjDecoding SimMatrixPermutationMatching.m,
with the one alteration that a different .mat file of similarity matrix data is read-in at the beginning.

Because the .mat file to be read-in by this Step4 decoding script is included with the rest of the
code, the reader may skip straight to running the Step4 script, if desired. The data in that .mat file
can be recreated from scratch by running the Steps 1 to 3 scripts.

Chance-level performance of a Monte Carlo permutation distribution, compared against
a binomial distribution

Chance performance for our new permutation-matching decoding approach is determined by a
permutation distribution. For more standard multi-class decoding approaches, chance perfor-
mance is given by a binomial distribution. The Matlab script perm matching vs binomial.m in
the Additional scripts subdirectory calculates and compares these two distributions, for the case
of eight different stimulus conditions. As running that code demonstrates, for both distributions
the expected number correct for chance performance is 1 out of 8, and the p<0.05 critical-value
number correct is 3 out of 8.

References
Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., Herrmann, C. S., Haxby, J. V.,

Hanson, S. J., & Pollmann, S. (2009). PyMVPA: A unifying approach to the analysis of neuroscientific data. Front
Neuroinformatics, 3, 3.

2


