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Deep Artificial Neural Networks Reveal a Distributed Cortical
Network Encoding Propositional Sentence-Level Meaning
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Understanding how and where in the brain sentence-level meaning is constructed from words presents a major scientific challenge.
Recent advances have begun to explain brain activation elicited by sentences using vector models of word meaning derived from patterns
of word co-occurrence in text corpora. These studies have helped map out semantic representation across a distributed brain network
spanning temporal, parietal, and frontal cortex. However, it remains unclear whether activation patterns within regions reflect unified
representations of sentence-level meaning, as opposed to superpositions of context-independent component words. This is because mod-
els have typically represented sentences as “bags-of-words” that neglect sentence-level structure. To address this issue, we interrogated
fMRI activation elicited as 240 sentences were read by 14 participants (9 female, 5 male), using sentences encoded by a recurrent deep
artificial neural-network trained on a sentence inference task (InferSent). Recurrent connections and nonlinear filters enable InferSent to
transform sequences of word vectors into unified “propositional” sentence representations suitable for evaluating intersentence entailment
relations. Using voxelwise encoding modeling, we demonstrate that InferSent predicts elements of fMRI activation that cannot be pre-
dicted by bag-of-words models and sentence models using grammatical rules to assemble word vectors. This effect occurs throughout a
distributed network, which suggests that propositional sentence-level meaning is represented within and across multiple cortical regions
rather than at any single site. In follow-up analyses, we place results in the context of other deep network approaches (ELMo and
BERT) and estimate the degree of unpredicted neural signal using an “experiential” semantic model and cross-participant encoding.
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embedding
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A modern-day scientific challenge is to understand how the human brain transforms word sequences into representations of sen-
tence meaning. A recent approach, emerging from advances in functional neuroimaging, big data, and machine learning, is to com-
putationally model meaning, and use models to predict brain activity. Such models have helped map a cortical semantic
information-processing network. However, how unified sentence-level information, as opposed to word-level units, is represented
throughout this network remains unclear. This is because models have typically represented sentences as unordered “bags-of-
words.” Using a deep artificial neural network that recurrently and nonlinearly combines word representations into unified proposi-
tional sentence representations, we provide evidence that sentence-level information is encoded throughout a cortical network,
rather than in a single region. j
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2015) or mid-superior temporal cortex (Frankland and Greene,
2015). However, recent studies suggest a more distributed corti-
cal operation. Word-by-word construction of sentence meaning
is marked by electrocorticographic activation across distributed
cortical regions (Fedorenko et al., 2016; Nelson et al., 2017), and
electro/magnetoencephalographic representations of nouns in-
context have been detected in inferior frontal, temporal, and in-
ferior parietal cortex (Lyu et al., 2019). Relatedly, fMRI studies of
sentences/narratives have revealed that distributed cortical
regions encode similar components of semantic information
(Wehbe et al., 2014; Huth et al., 2016; Anderson et al., 2017a; de
Heer et al., 2017; Yang et al., 2017; Pereira et al., 2018; Deniz et
al., 2019) as stimulated by words regardless of their grammatical
role/sentence position (Anderson et al., 2019a).

While fMRI studies strongly suggest that sentence-level
semantics are encoded within and across multiple cortical
regions, they have largely fallen short of exposing unified sen-
tence-level representations in one critical respect. To identify
semantic information in fMRI, studies usually rely on models
representing sentences as superpositions of context-independent
words. Because such “bag-of-words” (BoW) models ignore con-
text effects, word order, and syntactic structure, it remains
unclear whether the fMRI representations they capture reflect
sentence-level semantics, as opposed to context invariant word
activation elicited in early-stage comprehension (e.g., Swinney,
1979; Tanenhaus et al., 1979; Till et al., 1988).

Computational linguistics research has begun to address the
limitations of BoW approaches, using deep artificial neural net-
works to create sentence representations reflecting within-sen-
tence contexts and word order (e.g., Conneau et al., 2017; Peters
et al., 2018; Subramanian et al., 2018; Devlin et al., 2019). These
models present a new opportunity to characterize how sentence
meaning is encoded across the cortex. We here exploit these
models to test for evidence that representations of sentence-level
meaning are encoded in multiple regions of the semantic
network.

We examined an fMRI dataset scanned as 14 participants
read 240 sentences (Anderson et al., 2017a). We used a voxelwise
encoding modeling approach to conduct a controlled compari-
son of how semantic models reflecting different sentence charac-
teristics contributed to predicting fMRI activation throughout
the language network (Fedorenko et al., 2010). Models imple-
mented different “composition functions” that combined words
into sentences with/without contextual/grammatical/sequential
information. Critically, all composition functions operated on
the same word-level semantic input, modeled by GloVe
(Pennington et al.,, 2014). Thus, differences in models’ ability to
explain fMRI activation solely reflected the characteristics of
composition. GloVe approximates word-level meaning using
numeric vectors of values reflecting how often the modeled word
co-occurred with other words across a large corpus of text. Since
words with similar meanings tend to appear in similar linguistic
contexts, they end up with similar vector representations.

To model sentence-level semantics, we primarily focused on
InferSent (Conneau et al.,, 2017). InferSent is a recurrent nonlin-
ear deep network optimized to produce “propositional” sentence
representations for classifying intersentence entailment relation-
ships. InferSent has yielded state-of-the-art performance in sev-
eral natural language processing tasks and in decoding fMRI
activation elicited by sentences, albeit at a whole-brain level (Sun
et al,, 2019). We focused on InferSent because: (1) sentence
entailment has a close tie to the traditional notion of sentences as
propositions; and (2) InferSent represents sentences by

J. Neurosci., May 5, 2021 - 41(18):4100-4119 - 4101

combining word-level models (e.g., GloVe) that are well estab-
lished in the neuroimaging literature (since Mitchell et al., 2008;
J. Wang et al., 2017; Pereira et al., 2018; Anderson et al., 2019a)
with a relatively simple deep network architecture.

We hypothesized that InferSent would predict activation pat-
terns in fMRI data across the semantic network that cannot be
accounted for by the baseline models, evidencing that propositio-
nal sentence-level meaning is encoded throughout this network
rather than being localized to a single site. In follow-up analyses,
we tested whether high-performance deep networks with more
complex architectures and more parameters afforded stronger
fMRI predictions. These networks were "Embeddings from lan-
guage models” (ELMo) (Peters et al., 2018) and "Bidirectional
encoder representations from transformers" (BERT) (Devlin et
al., 2019). Finally, we tested for hitherto unpredicted fMRI signal
using an “experiential” behavioral semantic model, and cross-
participant encoding.

Materials and Methods

Overview

We reanalyzed an fMRI dataset scanned as 14 people read 240 sentences
describing everyday situations (Anderson et al., 2017a; and summarized
below). Sentences were 3-9 words long and formed from 242 different
content words. Ten of the participants saw the set of sentences repeated
12 times in total, and the remaining 4 participants who attended half the
number of visits saw the sentences 6 times. Sentence order was randomly
shuffled each time. Following standard fMRI preprocessing steps
(detailed in later sections), each sentence was represented as a single
fMRI volume per participant.

In our primary analyses, we tested how well fMRI sentence activation
patterns could be predicted using InferSent-based representations of
propositional sentence-level semantics comparative to a series of base-
line models (including BoW) that reflected simple rule-based strategies
for combining word-level semantic representations into sentences
(Fig. 1). We additionally included three other control models in the anal-
yses that captured the grammatical structure and the visual appearance
of sentence stimuli. Prediction was implemented using voxelwise encod-
ing modeling with ridge regression (Hoerl and Kennard, 1970) in a
leave-one-sentence-out nested cross-validation framework. All semantic
sentence models in our primary analyses (InferSent and the baseline/
control models) were constructed from the same word-level representa-
tions (GloVe) (Pennington et al., 2014). Analyses tested for patterns in
fMRI representations of sentences that InferSent could predict but the
other models could not. The analysis was initially undertaken on voxels
sampled across the whole cortex. To test for evidence that fMRI repre-
sentations within multiple distributed brain regions reflected propositio-
nal meaning, the analysis was repeated within regions of a predefined
language network (Fedorenko et al., 2010).

Next, in a follow-up analysis, we placed the results in the context of
two other deep networks (ELMo and BERT) that have recently broken
various Natural Language Processing (NLP) benchmarks and contrib-
uted to high-performance solutions to the Stanford Natural Language
Inference (SNLI) sentence entailment task (on which InferSent was
trained). ELMo and BERTS’ high NLP performance gives good reason to
hypothesize they would provide highly accurate fMRI predictions. On
the flipside, while BERT is probably the strongest and most complex
NLP approach, architecturally it might be the least cognitively plausible
for the current serial reading task because BERT processes every word in
a sentence in parallel (for a focused investigation of related matters, see
also Merkx and Frank, 2020). So, the added complexity may provide no
benefit here. To find out, we repeated the cortex-level analysis using
ELMo and BERT.

In a final analysis, we estimated the room for improvement in model-
ing the current fMRI dataset. We first tested for semantic signal that was
unpredicted by the deep network models using an “experiential attrib-
ute” model (Binder et al., 2016). The experiential model was acquired via
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Figure 1.  Overview of our primary analysis. Top left, fMRI sentence reading experimental protocol. Top right, A schematic illustrating how InferSent forms sentence-level representations

from context-independent word-level semantic representations (GloVe). Bottom left, Baseline models, which formed sentences by combining GloVe vectors according to grammatical rules, con-
catenation, or averaging. Bottom right, The ridge regression approach used to map the sentence models to predict fMRI activation. In the diagram, this is illustrated for only the BoW(GloVe)
vector; however, mappings were estimated in the same way for all models. The procedure used to evaluate model-based predictions is illustrated in Figure 4.

behavioral ratings of sensory, motor, cognitive, interoceptive, and
affective attributes of worldly experience, and potentially reflects
semantic information that cannot be estimated from text corpora.
Finally, to estimate how much sentence processing fMRI signal
(semantic or otherwise) that was left unpredicted by all of the mod-
els, we applied a cross-participant fMRI encoding analysis (similar
to Anderson et al., 2019b).

As additional background, despite their high NLP performance, we
had considered ELMo and BERT to be less suitable vehicles for our pri-
mary analysis because: (1) ELMo and BERT do not strictly define how
sentence representations should be constructed from words (unlike
InferSent, which produces a single sentence representation); (2) ELMo
and BERT would provide more obscure baseline models (e.g., context-
independent BoW) because they operate on character-level/subword
units (see Materials and Methods), so a BoW would be a bag-of-word-
parts; and (3) ELMo and BERT are architecturally more complex than
InferSent, which makes analyses and interpretation more complex.

Materials

All sentences were preselected as experimental materials for the
Knowledge Representation in Neural Systems project (Glasgow et al.,
2016) (www.iarpa.gov/index.php/research-programs/krns), sponsored
by the Intelligence Advanced Research Projects Activity. The stimuli
consisted of 240 written sentences containing 3-9 words and 2-5
(mean = SD=3.33+0.76) content words, formed from different

combinations of 141 nouns, 62 verbs, and 39 adjectives (242 words). The
sentences are listed in full by Anderson et al. (2017a, 2019a). Sentences
were in active voice and consisted of a noun phrase followed by a verb
phrase in past tense, with no relative clauses. Most sentences (200 of
240) contained an action verb and involved interactions between
humans, animals, and objects, or described situations involving different
entities, events, locations, and affective connotations. The remaining 40
sentences contained only a linking verb (“was”). Each word occurs a
mean * SD (range) of 3.3 = 1.7 (1-7) times throughout the entire set of
sentences and co-occurs with 8.1 = 4.3 (1-19) other unique words. The
same two words rarely co-occur in more than one sentence, and 213 of
242 words never co-occur more than once with any other single word.
Forty-two sentences contained instances of words not found in any of
the other 239 sentences, and 3 of these sentences contained 2 unique
words. There were thus 45 words that occurred in only one sentence, of
which 29 were nouns, 7 were verbs, and 9 were adjectives.

Participants

Participants were 14 healthy, native speakers of English (5 males, 9
females; mean age=32.5 years, range 21-55 years) with no history of
neurologic or psychiatric disorders. All were right-handed according to
the Edinburgh Handedness Inventory (Oldfield, 1971). Participants
received monetary compensation and gave informed consent in confor-
mity with the protocol approved by the Medical College of Wisconsin
Institutional Review Board.
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Procedure

Participants took part in either 4 or 8 scanning visits. The mean interval
between sessions was 3.5d (SD=3.14 d). The range of the intervals
between first and last visits was 15-43 d. In each visit, the entire list of
sentences was presented 1.5 times, resulting in 12 presentations of each
sentence over the 8 visits in 10 participants, and 6 presentations over 4
visits in 4 participants. Each visit consisted of 12 scanning runs, each run
containing 30 trials (one sentence per trial) and lasting ~6 min. The pre-
sentation order of each set of 240 sentences was randomly shuffled.

The stimuli were back-projected on a screen in white Courier font
on a black background. Participants viewed the screen while in the scan-
ner through a mirror attached to the head coil. Sentences were presented
word-by-word using a rapid serial visual presentation paradigm
(Forster, 1970). Nouns, verbs, adjectives, and prepositions were pre-
sented for 400 ms each, followed by a 200 ms interstimulus interval.
Articles (“the”) were presented for 150 ms followed by a 50 ms intersti-
mulus interval. Mean sentence duration was 2.8 s (range, 1.4-4.2 s).
Words subtended an average horizontal visual angle of ~2.5°. A jittered
intertrial interval, ranging from 400 to 6000 ms (mean = 3200 ms), was
used to facilitate deconvolution of the BOLD signal. Participants were
instructed to read the sentences and think about their overall meaning.
They were told that some sentences would be followed by a probe word,
and that in those trials they should respond whether the probe word was
semantically related to the overall meaning of the sentence by pressing
one of two response keys (10% of trials contained a probe). Participants’
mean accuracy was 86% correct, with a minimum accuracy of 81%.
Participants were given practice with the task outside the scanner with a
different set of sentences. Response hand was counterbalanced across
scanning visits.

MRI parameters and preprocessing

MRI data were acquired with a whole-body 3T GE 750 scanner at the
Center for Imaging Research of the Medical College of Wisconsin using
a GE 32-channel head coil. Functional T2:-weighted EPIs were collected
with TR=2000ms, TE=24ms, flip angle=77°, 41 axial slices,
FOV=192 mm, in-plane matrix=64 x 64, slice thickness=3 mm,
resulting in 3 X 3 X 3 mm voxels. T1-weighted anatomic images were
obtained using a 3D spoiled gradient-echo sequence with voxel dimen-
sions of 1 X 1 x 1 mm. fMRI data were preprocessed using AFNI (Cox,
1996). EPI volumes were corrected for slice acquisition time and head
motion. Functional volumes were aligned to the T1-weighted anatomic
volume, transformed into a standardized space (Talairach and
Tournoux, 1988), and smoothed with a 6 mm FWHM Gaussian kernel.
The data were analyzed using a GLM with a duration-modulated HRF,
and the model included one regressor for each sentence. fMRI activity
was modeled as a y function convolved with a square wave with the
same duration as the presentation of the sentence, as implemented in
AFNT’s 3dDeconvolve with the option dmBLOCK. Duration was coded
separately for each individual sentence. Finally, a single sentence-level
fMRI representation was created for each unique sentence by taking the
voxelwise mean of all replicates of the sentence.

Cortical language network

To test for evidence that multiple cortical regions encode propositional
semantics, we analyzed a “language network” that was predefined by
Fedorenko et al. (2010) and can be freely downloaded from https://evlab.
mit.edu/funcloc/. The language network specifies cortical regions that
were more functionally activated when stimulated with real sentences
than by sequences of pseudowords. The language network spans bilateral
temporal, inferior parietal, and inferior and mid frontal regions. These
regions were initially identified on the left hemisphere and flipped onto
the right. We selected the “original” language network parcellation that
contains 16 ROIs over other alternatives on the website (e.g., an updated
network with 12 ROIs) because the original network covers more cortex
and contains more anterior-posterior subdivisions of the temporal cor-
tex (which was convenient for our current goal of testing multiple corti-
cal ROIs). The cortical location of ROIs is illustrated (see Figs. 7, 8), and
the breakdown of anatomic regions contributing voxels analyses within
each ROl is listed in Table 1.
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Experimental design and statistical analysis

Overview of the sentence models

To predict fMRI representations of sentence meaning, we deployed a
selection of semantic models of sentence meaning. Our primary analysis
used InferSent, which computes a complex recurrent nonlinear compo-
sition of words into unified sentence representations. We implemented
three baseline models, Bow(GloVe), Seq(GloVe), and Gramm(GloVe),
which we used to account for linear/sequential/grammatical rule-based
composition of words into sentences. Importantly, all four models,
including InferSent, were derived from the same context-independent
word-level semantic model, GloVe (Pennington et al., 2014). To serve as
a control for syntax, we constructed a model of the grammatical struc-
ture of sentences (Grammar). To further control for fMRI activation
associated with visual processing of the written sentence stimuli, we con-
structed two additional models that coded the descriptive statistics of
word/sentence lengths (Char stats) and the rudimentary visual appear-
ance of sentences (Word overlay), respectively. These models echo
approaches taken by previous studies to control for the visual appear-
ance of words (e.g., Just et al., 2010; Devereux et al., 2013; Wehbe et al.,
2014; Fernandino et al., 2016).

In our follow-up analyses, we placed the predictions made by
InferSent (and the other models) in the context of two other deep net-
work models, ELMo and BERT, and a behavioral rating-based experien-
tial attribute model. The models are described in the following text in
the order of the analyses in which they first appear. We provide a more
cursory description of ELMo, BERT, and the attribute model because
they are a secondary focus of the current study.

GloVe semantic vectors: word-level units in primary analysis

There has been a long tradition in computational linguistics of leverag-
ing the distributional statistics of word co-occurrences in natural text as
a basis for estimating semantic representation. So-called distributional
semantic models (also known as word embeddings) approximate word
meaning using vectors of values reflecting how often a target word co-
occurred with other words across a huge body of text (Lund and
Burgess, 1996; Landauer and Dumais, 1997; Mikolov et al., 2013;
Pennington et al., 2014). The current article is principally based on one
such model, GloVe (Pennington et al., 2014). GloVe represents individ-
ual words as 300-dimensional floating point vectors derived by factoriz-
ing a word co-occurrence matrix (vocabulary size is 2.2 million words;
and co-occurrences were measured across 840 billion tokens from
Common Crawl: https://commoncrawl.org). GloVe initially came to
prominence in the fMRI literature for yielding state-of-the-art perform-
ance decoding fMRI activation associated with sentences in Pereira et
al’s (2018) “universal neural decoder of linguistic meaning.”
Additionally, GloVe was the basis for the initial implementation of
InferSent (Conneau et al., 2017). For these reasons, we used GloVe as
the basis word-level unit in our analyses.

InferSent(GloVe): primary analysis

InferSent is a supervised recurrent nonlinear deep learning approach
that was presented as an alternative to previous unsupervised corpus-
based methods for modeling sentence-level semantics (Conneau et al.,
2017). In supervised learning, InferSent leverages human expert knowl-
edge to optimize neural network weights to recurrently combine and
refine word-level representations to model sentences. The expert knowl-
edge was provided by the SNLI dataset (Bowman et al., 2015), which
contains 570,000 English sentence pairs, with each pair manually catego-
rized according to (1) whether one sentence entailed the other, (2)
whether sentence pairs were contradictory, or (3) neutral. Thus, the final
sentence representations produced are optimized to support accurate
computations of intersentence entailment relations. Successful evalua-
tions on separate natural language inference datasets are presented in
Conneau et al. (2017).

We refer to the unified sentence representations produced by
InferSent as propositional because classifying entailment relies on an
informal comparison of the propositional content of sentences: for
example, whether the relationship between entities referenced by a sen-
tence appears to be true or false, and whether a second sentence appears
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Table 1. Neuroanatomical regions contributing to the language network ROl analyses’

112
*+15.9 113.2 154.4 116.4
LROI'1 voxels  LROI2 +17.5 RROI'1 +26.0 RROI2 +18.8
ctx_Ih_S_temporal_sup 37.2%  ctx_lh_S_temporal _sup 40.5  ctx_rh_S_temporal_sup 314 ctx_rh_S_temporal_sup 25
ctx_lh_G_temporal_middle 18.9%  ctx_lh_G_temporal_middle 149  tx_rh_G_temporal_middle 17.8  ctx_rh_G_occipital_middle 21.1
ctx_lh_G_temp_sup-Lateral 1.4%  ctx_lh_G_occipital_middle 9.6  ctx_rh_G_pariet_inf-Angular 151 ctx_rh_G_pariet_inf-Angular 20.1
ctx_Ih_G_temp_sup-Plan_tempo ~ 10.8%  ctx_lh_G_temporal_inf 8 ctx_rh_G_pariet_inf-Supramar 9.1 ctx_rh_S_occipital_ant 10
ctx_lh_G_pariet_inf-Supramar 7.8%  ctx_Ih_G_pariet_inf-Angular 5.7  ctx_rh_G_temp_sup-Lateral 73 cx_rh_G_and_S_occipital_inf 8.7
ctx_lh_S_occipital_ant 5 ctx_rh_G_temporal_middle 75
LROI 3 111.6 LROI 4 123.9 RROI 3 1203 RROI 4 141.1
*+13.9 *+215 =120 +245
ctx_Ih_S_temporal_sup 324 ax_lh_S_front_inf 322 ctx_rh_S_temporal_sup 322 ax_rh_S_front_inf 19.8
ctx_lh_G_temporal_middle 253 cx_lh_G_front_inf-Opercular 225  ctx_rh_G_temporal_middle 30.6  ctx_rh_S_precentral-inf-part 18
ctx_Ih_G_temp_sup-Lateral 143 ctx_Ih_S_precentral-inf-part 142 ctx_rh_G_temporal_inf 1.9 ctx_rh_G_front_inf-Triangul 15.9
ctx_Ih_G_temporal_inf 87  cx_lh_G_front_inf-Triangul 1.6 ctx_rh_G_temp_sup-Lateral 102 ctx_rh_G_front_inf-Opercular 14.8
ctx_lh_S_temporal_inf 6.8  ctx_Ih_G_front_middle 1.5 ctx_rh_S_temporal_inf 5.7  ctx_rh_G_front_middle 14.5
ctx_lh_S_collat_transv_ant 54  ctx_lh_G_precentral 5.9 ctx_rh_G_precentral 9.1
LROI'5 119  LROI 6 130.6  RROI'S 1209  RROI6 1383
+18.7 *+15.6 =174 *19.2
ctx_Ih_G_temp_sup-Lateral 30.6  ctx_lh_G_front_inf-Triangul 241 ctx_rh_S_temporal_sup 283 ctx_rh_G_orbital 19.4
ctx_Ih_S_temporal _sup 193  ctx_Ih_G_orbital 13 tx_rh_G_temporal_middle 247 cx_rh_G_front_inf-Triangul 16.7
ctx_lh_G_temporal_middle 19.2  ctx_lh_G_front_inf-Orbital 1.8 ctx_rh_G_temp_sup-Lateral 217  ctx_rh_G_front_inf-Orbital 12
ctx_Ih_S_circular_insula_inf 82  ctx_lh_Lat_Fis-ant-Horizont 9.7 ctx_rh_G_temp_sup-Plan_polar 6.2 ctx_rh_G_insular_short 7.7
ctx_lh_G_temp_sup-Plan_polar 53 ctx_lh_G_temp_sup-Lateral 6.2 ctx_rh_Lat_Fis-ant-Horizont 6.8
ctx_rh_G_temp_sup-Lateral 53
LROI'7 116.6  LROI 8 17.6  RROI'7 1220  RROI8 1355
*+255 *+253 +213 +15.3
ctx_Ih_G_pariet_inf-Angular 332 cx_lh_G_precentral 622 ctx_rh_G_occipital_middle 326 ctx_rh_G_precentral 47
ctx_Ih_G_occipital_middle 244 ctx_Ih_G_front_middle 138 ctx_rh_S_oc_sup_and_transversal 20.7  ctx_rh_G_front_middle 15.6
ctx_lh_S_temporal _sup 193 ctx_Ih_S_precentral-inf-part 7.5 ctx_rh_G_pariet_inf-Angular 17.7  dx_rh_S_precentral-sup-part 8.7
ctx_Ih_S_oc_sup_and_transversal 11 ctx_Ih_S_precentral-sup-part 54 ctx_rh_G_occipital_sup 108 ctx_rh_S_central 7.2
ctx_rh_S_oc_middle_and_Lunatus 7.1 ctx_rh_G_postcentral 7.2
ctx_rh_S_precentral-inf-part 6.2

“Data are mean = SD for 14 participants. Each entry displays the no. of stable voxels within each language network ROl that contributed to analyses. For example, within LROI 1, on average 112 voxels contributed to the
analysis of each participant. Anatomical labels (Destrieux Atlas) and corresponding percentages indicate the mean percentage of times (across 14 participants) that a selected voxel belonged to that anatomic region. For exam-
ple, within LROI 1, 37.2% of voxels selected were from left superior temporal sulcus (ctx_Ih_S_temporal_sup) when pooling across all cross-validation iterations and participants.

to specify a coherent or contradictory (propositional) interentity rela-
tionship. We say “informal” and “appears to be” because strict logical
relationships rarely hold in natural language. For instance, although
most people would consider that “Socrates got caught out by the rain”
probably entails that “Socrates got wet,” this is not 100% assured; per-
haps Socrates was stuck sheltering from the rain. Likewise, our use of the
word “proposition” should be considered to be more graded and proba-
bilistic in nature than the TRUE/FALSE logical propositions typical of
propositional calculus.

InferSent is constructed from two modules (Figs. 1, 2): (1) a sentence
encoder, which is a recurrent artificial neural network that iteratively
combines an input sequence of word vectors (currently GloVe) pre-
sented one at a time, into a sentence-level vector output; and (2) an
entailment classifier, which takes two sentence-level vectors as input
(two outputs from the sentence encoder) and estimates whether the pair
are entailed, contradictory, or neutral. The entailment classifier plays a
critical role in the training procedure. Specifically, the difference between
the classifier estimate and the correct classification (from SNLI) provides
an error signal that can be propagated back through the sentence
encoder to optimize network weights. After the sentence encoder
weights have been optimized via the entailment classifier, the encoder
module can be used in isolation to generate new representations of novel
sentences (as was the case for encoding the 240 sentences tested in this
article). The architecture of the two modules is outlined in more detail as
follows.

Sentence encoder. The basic unit of the sentence encoder is the Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)

recurrent neural network. Recurrent networks are broadly characterized
by having feedback loops that enable previous network outputs to
inform processing of and to be integrated with new inputs. This enables
new words to be interpreted in fed back context, which is critical for cor-
rect interpretation of polysemous words and homonyms. For instance,
“bat” has multiple meanings (e.g., flying mammal or sports tool) that
can be selected by context (e.g., fruit bat vs baseball bat). LSTMs were
introduced to overcome difficulties faced by standard recurrent
approaches in retaining critical information over long time intervals. For
instance, to correctly interpret “...the bat flew through the air,” given the
preceding context “The batsman lost his grip and...”, it is necessary to
relate bat to batsman at the start of the sentence. LSTMs accommodate
long-term dependencies through a network architecture that uses a
memory cell to remember information across consecutive network
cycles, and a series of three nonlinear information gates that manage
how information flows through the network. Gates are as follows: (1) a
forget gate, which deletes irrelevant information from the cell; (2) an
input gate, which selects what new information should be added to the
cell; and (3) an output gate, which retrieves information from the cell to
form network output. All three gates select information to delete/store/
retrieve based on the new input (e.g., a word) and previous output (e.g.,
the sentence so far). Thus, on each iteration, a new word is input, the cell
memory is updated, and a filtered version of the cell memory is output
from the network, and fed back for the next iteration.

The sentence encoder uses a bidirectional LSTM (Graves and
Schmidhuber, 2005). As the name implies, bidirectional LSTMs combine
two LSTMs, which, respectively, cycle forwards and in reverse order
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through input (here words). Thus, for any word in a sentence, the bidir-
ectional LSTM simultaneously supplies information on historic and
future context, which was collated by concatenating outputs from the
two LSTMs. Intuition of how modeling future context could be advanta-
geous for language comprehension is easy to supply; it is not until the
end of the sentence, “The bat flew through the air, and bit her on the
neck,” that it is clear that the bat is a vampire. Indeed, encoding of past
and future context often affords practical advantages over unidirectional
LSTMs (e.g., Graves and Schmidhuber, 2005), as also was the case for
InferSent in tests on a battery of standard NLP tasks (Conneau et al.,
2017).

However, because bidirectional operation produces an output vector
for each word (reflecting forwards/reverse information across the entire
sentence), one must be chosen to reflect a sentence, or they must be
combined. To form a single sentence representation, InferSent selects the
maximum pointwise activation value across all output vectors. In tests on
NLP tasks, this “max-pooling” representation was found to have practical
advantages over the obvious alternative of mean-pooling (Conneau et al.,
2017). The max-pooled sentence vector was the representation used in all
analyses in this article. Sentence vector length was 4096.

Entailment classifier. To classify whether sentence pairs are entailed,
contradictory, or neutral, a fully connected feedforward neural network,

/- Max

LSTM — LSTM —> LSTM — LSTM

InferSent algorithm encoding unified propositional sentence representations. While the Entailment classifier
operates on two sentences (S1 and S2), the encoding of only a single sentence is illustrated to simplify display. In prac-
tice, the second sentence would be encoded separately, in precisely the same way as illustrated for the first sentence.
Once the two sentences have been encoded, they are combined and integrated, and the composite representation is
evaluated to estimate whether the sentences entailed one another as opposed to being contradictory or neutral.
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with a single hidden layer and a 3 class Softmax
output layer, is used. The Softmax function nor-
malizes the three network outputs to sum to 1, to
estimate the probability of each entailment class
being correct. Classifier input was supplied by the
sentence encoder, which was run twice per classi-
fication to generate two sentence representations
for testing. The classifier input representation
combined information within and across the two
sentences, as was computed in three ways: (1) con-
catenating the sentence vectors, (2) taking the
absolute difference between sentence vectors, and
(3) taking the pointwise multiplication of the two
vectors. These three representations were con-
catenated for entry into the classifier.

InferSent Training. As mentioned above,
training was performed with sentences from the
SNLI dataset (Bowman et al., 2015). Optimization
of weights was achieved by stochastic gradient
descent, run on minibatches of 64 sentence pairs.
The error signal computed across the 64 sentence
classifications was used as a basis for adapting
weights across both the classifier and the sentence
encoder. Learning rate and weight decay parame-
ters were set at 0.1 and 0.99, respectively. Learning
weight was divided by 5 if classification accuracy
decreased. Training was terminated when the
learning rate fell below a threshold of 107>, Source
code is freely available (see Code availability).

Following training, the encoder module was
used in isolation to generate vector representa-
tions of the 240 sentences included in the fMRI
study. For all of the analyses in this article, we
used the pretrained version of InferSent con-
structed by the original authors (Conneau et al.,
2017).

~

GloVe

vectors
BoW(GloVe): primary analysis baseline

BoW models represent sentences as an unordered
linear assembly of constituent words (e.g., by com-
puting the pointwise average of word vectors),
and have endured as a practically successful tech-
nique in both computational linguistics (Mitchell
and Lapata, 2010; Kiela and Clark, 2014), and
fMRI analyses (Anderson et al., 2017a, 2019a,b; J.
Wang et al,, 2017; Yang et al., 2017; Pereira et al.,
2018) despite their obvious shortcomings in
neglecting word order, syntax, and morphology.
We implemented the BoW model by taking the pointwise mean of
GloVe vectors for constituent words in sentences (Fig. 1). In previous
work

(e.g., Anderson et al.,, 2019b), we had excluded function words (e.g.,
“The,” “in”) from our analyses; however, we included them here to serve
as a control for InferSent, which does operate using function words.
Relatedly, in pilot tests, we observed that including function words led to
slightly greater prediction scores. Also, because InferSent uses a max-
pooling stage (described in the previous section), we experimented with
computing the maximum featurewise value across word vectors within
sentences, rather than averaging them. This brought no performance
benefit, and these results are not discussed further.

Gramm(GloVe): primary analysis baseline

To capture the grammatical structure of sentences in a semantic model,
we created a canonical sentence representation that contained slots for
semantic vectors of words with different grammatical roles. Nine differ-
ent grammatical structures were identified in the 240 experimental sen-
tences (Anderson et al., 2019a). These nine structures were constructed
from combinations of the following elements: Subject (240), Verb (196),
Direct Object (128), Indirect Object (27), Copula-Phrase (44), and
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Adjunct (74). The number in parentheses indicates the number of sen-
tences containing the grammatical element. The nine different grammat-
ical structures were as follows, with the number of sentences following
that structure listed in parentheses:

Subject, Verb (3): [S: The patient][V: survived]

Subject, Verb, Object (98): [S: The family][V: survived][O: the
powerful hurricane]

Subject, Verb, Object, Indirect Object (7): [S: The child][V: gave][O:
the flower][IO: to the artist]

Subject, Verb, Object, Adjunct (23): [S: The child][V: broke][O: the
glass][Adjunct: at the restaurant]

Subject, Verb, Indirect Object (19): [S: The parent][V: shouted][IO:
at the child]

Subject, Verb, Indirect Object, Adjunct (1) [S: The judge] [V: stayed]
[IO: at the hotel][Adju: during the vacation]

Subject, Verb, Adjunct (45): [S: The wealthy family][V: celebrated]
[Adjunct: at the party]

Subject, Copula-Phrase (39): [S: The family] [Copula-Phrase: was
happy]

Subject, Copula-Phrase, Adjunct (5): [S: The school] [Copula-Phrase:
was empty][Adju: during summer]

The canonical sentence model (illustrated in Fig. 1) was a long vector
containing 6 slots for GloVe vectors corresponding to each of the gram-
matical elements (hence 1800 dimensions in total, given each GloVe vec-
tor is 300 dimensions). The vector was first initialized with zeros. Then,
GloVe vectors for content words were slotted into the vector, according
to their grammatical role. In cases where a grammatical element is modi-
fied by an adjective (e.g., “The wealthy family” in the above example),
then semantic vectors for the adjective were pointwise averaged with the
noun. If sentences did not contain a particular grammatical entry, their
value remained as zero. Function words (illustrated in italics) in the
above example were not included in the model. This was because we had
attempted to implement the role of function words by segregating con-
tent words within the grammatical frame.

Seq(GloVe): primary analysis baseline

To model the order that constituent content words in sentences in which
appeared, we simply concatenated GloVe vectors for words end on end
in order of presentation (Fig. 1). Specifically, each sentence was modeled
as a long vector containing 9 slots, to accommodate 9 or fewer words
(the longest sentence contained 9 function and content words). Thus,
the vector had 2700 dimensions. If the sentence contained only 3 words,
GloVe vectors would be slotted in to the first, second, and third slots
(the first 900 dimensions) and the remainder of the vector would be
padded with zeros.

Grammar: primary analysis baseline

To capture only the grammatical structure of sentences, we created a bi-
nary model encoding the presence or absence of grammatical elements
in sentences. In line with the grammatically structured semantic model
described previously (Gramm(GloVe)), the current model was a vector
containing 6 entries for Subject, Verb, Direct Object, Indirect Object,
Copula-Phrase, and Adjunct. If a sentence contained a grammatical ele-
ment, the corresponding vector entry was assigned the value 1.
Otherwise, it was assigned a 0.

Visual appearance of textual sentence stimuli: primary analysis controls

To model fMRI activation associated with the visual processing of the
written sentence stimuli, we constructed two models. “Char stats” coded
descriptive statistics of the number of characters and words in sentences.
Each sentence was represented as a 6 element vector coding the number
of words in the sentence, the mean, SD, maximum and minimum num-
ber of characters per word, and the number of characters in the entire
sentence. “Word overlay” coded a coarse representation of the visual
appearance of the sentence stimuli, which had been presented word by
word. Each sentence was represented as a vector of 11 elements. Eleven
reflected the number of characters comprising the longest words within
the set of experimental sentences. To construct the sentence representa-
tion, each word was first also modeled as a binary vector of eleven
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elements. The presence/absence of a character in respective positions of
the word was modeled as a 1/0, respectively. Then all word vectors in the
sentence were pointwise summed. As a dummy example, illustrated
with a 6 element vector, “A cat jumped” would be represented as:
[322111]=[100000]+[111000]+[111111].

ELMo: follow-up analyses

ELMo is a recurrent deep network approach that was introduced to gen-
erate contextualized vector representations of words that capture ele-
ments of both syntax and semantics and accommodate polysemy (Peters
et al,, 2018). Architecturally, ELMo incorporates three layers of subnet-
works that process word sequences. Each layer outputs word vectors
with different degrees of contextualization. The three vectors are typi-
cally integrated via a weighted average that may be fine-tuned according
to the specific task.

ELMo’s first layer (L1) is a convolutional neural network that gener-
ates context-independent word vectors from the series of characters
forming each word. Operating on characters enables ELMo to leverage
morphologic similarities between words to generate semantic represen-
tations for new untrained words. For example, “computer,” “computed,”
and “computerized” are all semantically related and all share the same
character stem (“compute”), which would suggest that a new word
“computerization” would have a related meaning. The convolutional
network approach to transforming character sequences into word vec-
tors is described in detail by Kim et al. (2016).

The next two layers of ELMo are bidirectional LSTMs (L2 and L3)
that memorize features of past/future words to produce increasingly
contextualized word representations (for a more detailed description of
LSTMs, see InferSent). To encode bidirectional context, the output vec-
tors extracted from forwards and backwards LSTMs are concatenated.
The output of the second bidirectional LSTM (L3) feeds into a final
Softmax layer that predicts the identity of a forthcoming or preceding
word based on past or future words, respectively, depending on the
direction of operation. Thus, unlike InferSent, ELMo’s training is
entirely based on the statistics of word use in text corpora (rather than
human judgments of entailment relations). Weights across all layers of
ELMo are optimized to improve the word prediction accuracy.

We downloaded a pretrained implementation of ELMo constructed
by the original authors (Peters et al., 2018). In this implementation, all
word and sentence vectors have 1024 entries. Because ELMo does not
strictly commit to a specific way to transform word-level vectors into a
sentence representation, we pointwise averaged vectors for constituent
words in sentences to produce sentence vectors. We repeated this for
each layer to produce one context-independent and two contextualized
vectors for each sentence (ELMo L1, ELMo L2, and ELMo L3, respec-
tively). To combine all layers together, we concatenated them (ELMo L1,
L2,L3).

BERT: follow-up analyses
Transformer encoders, such as BERT (Devlin et al., 2019), were intro-
duced in part to address the practical limitations of recurrent networks
(including LSTMs) in capturing long-term dependencies between dis-
tant words, and in part to alleviate their lengthy serial processing times.
BERT saves on time by parallelized processing of all word/subword vec-
tors within a sentence/paragraph (for ease of explanation, we shall refer
to both words and subwords as words). BERT captures long-term
dependencies via a “self-attention” computation that places each word
into the context of all other word inputs. In particular, having simultane-
ous access to both past and future words enables BERT to form richer
representations of bidirectional context than bidirectional LSTMs
(which process past and future separately and concatenate the respective
outputs). However, such parallelization necessitates additional measures
to retain word order (which recurrent networks encode implicitly). To
resolve this, BERT explicitly integrates a code reflecting both the absolute
and relative sentential position of each word into that word’s input
vector.

Architecturally, BERT is formed from multiple layers of identical so-
called transformer blocks, with each block formed from multiple layers
of nodes. Each subsequent block produces an increasingly contextualized
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Figure 3.

selected for display post hoc because it yielded strong predictions in later analyses (Fig. 9).

representation of each word. Contextualization is achieved via self-atten-
tion, which quantifies how relevant each of the other input words is to
the current word (the self). In practice, multiple-self attention estimates
are computed (Multi-Headed Attention), which potentially capture dif-
ferent types of contextual relationships. The outputs across all attention
heads within a block are integrated, and passed on through a fully con-
nected feedforward network to form the input to the next block. The last
block feeds into two separate Softmax layers that either serve to predict
the identity of a masked input word or classify whether pairs of input
sentences were consecutive. All weights throughout BERT were opti-
mized according to these two tasks. The optimized architecture consti-
tutes a “pretrained” BERT model that can later be fine-tuned for a
particular task of interest (e.g., question answering) through additional
training.

In the current article, we apply the pretrained “BERT-large-uncased”
model, downloaded from Hugging Face (Wolf et al., 2019). This imple-
mentation has 24 layers of blocks, and 16 attention heads per block. The
layer outputs provide 24 candidate representations of words. Each word
vector has 1024 entries. We experimented with two ways to form senten-
ces. The first was to use word combinations assembled by BERT in
response to a key token “[CLS].” [CLS] is included in input sequences to
assist in the classification of consecutive sentences. The second was to
take the pointwise average across word representations within each layer.
Both approaches generated 24 sentence representations, one per layer.
In pilot analyses, we observed the [CLS] sentences to yield slightly
weaker fMRI predictions across layers, and we therefore focused on the
averaging approach.

Seq(experiential attribute): follow-up analyses

The experiential attribute model (Binder et al., 2016) presented an
alternative to modeling complex meaning using only word usage
statistics, and seeks to account for knowledge acquired from

RSA revealed the interrelationship between the different sentence models tested. Each entry in the matrix
corresponds to an RSA between two models. To compute RSA, intersentence Pearson correlation matrices were con-
structed for each model. To compare models, the below diagonal correlation matrix triangles were extracted from each
matrix and vectorized. Spearman correlation was then computed between vectorized triangles corresponding to each
model pair. Statistical significance was evaluated by permutation testing. The order of the sentences for one model was
randomly shuffled, and the rows and columns of the respective correlation matrix were rearranged according to the shuf-
fled order. The correlation between the vectorized matrix triangle of the shuffled matrix and the triangle of the other
unshuffled model matrix was then computed. The 1001 correlation coefficients (associated with shuffled and unshuffled
matrix comparisons) were ranked in descending order, and a p-value was computed as the rank associated with the
unshuffled coefficient divided by 1001. All correlations displayed were highly significant (p=0.001). BERT L12 was
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sensory, motor, cognitive, interoceptive, and
affective experience interacting with the
world, not just language and text. BoW based
experiential attribute models have been exten-
sively tested on the current fMRI dataset

ol (Anderson et al., 2017a, 2019a) and comple-
RSA - L
S ment BoW GloVe models in explaining repre-
PETT sentational structure (Anderson et al., 2019b).
correlation - .
A The experiential attribute model broadly
coefficient

aligns with “embodiment” theories that posit
representations of word meaning reflect a sum-
marization of the brain states involved in expe-
riencing that word, partially reenacted across
sensory/motor/affective/cognitive  subsystems
(e.g., Barsalou et al., 2008; Glenberg, 2010;
Pulvermiiller, 2013; Binder et al., 2016). This
model represents words in terms of human rat-
ings of how strongly people associate words
with different attributes of experience (e.g., “On
a scale of 0-6, to what degree do you think of a
banana as having a characteristic or defining
color?”). Ratings were collected via Amazon
Mechanical Turk for a total of 65 attributes
spanning sensory, motor, affective, spatial, tem-
poral, causal, social, and abstract cognitive expe-
riences. Ratings for each attribute were averaged
across workers to derive a single 65 dimensional
vector for each word.

To model sentences, attribute vectors for con-
stituent content words in sentences were con-
catenated in order of their presentation. This was
in precisely the same fashion as Seq(GloVe), but
excluding function words (which had not been
behaviorally rated). The Seq(Attribute) model was
implemented in light of the results of our primary
analysis (see Fig. 6) when Seq(GloVe) yielded higher
prediction scores than the BoW(Glove) or Gramm
(GloVe). Gramm(Attribute) and BoW/(Attribute)
had weaker explanatory power than the sequential model and are not dis-
cussed further.

Predictive mapping using ridge regression and leave-one-sentence-out
nested cross-validation

Because interpreting analyses of fMRI activation elicited by “uncon-
trolled” sentence/natural language stimuli can be complicated by spuri-
ous correlations between representations arising at different processing
levels (from vision to semantics), we first estimated the extent to which
this affected the current data by computing representational similarity
analyses (RSA) (Kriegeskorte et al., 2008) between all model pairs. These
analyses demonstrated that, despite similarities within broad model
classes (semantic models correlated more strongly with one another
than they did with models of visual processing), every model pair was
significantly related (Fig. 3; all p=0.001). In particular, BERT correlated
relatively strongly with the visual appearance models, which might
reflect BERT’s explicit encoding of word positions (which reflects sen-
tence length).

We therefore configured both our model fitting approach and evalu-
ation procedure to reduce the impact of such confounds between mod-
els. As we were primarily interested in evaluating how accurately the
semantic models would generalize to predict neural representations of
entirely new sentences, we undertook our analyses within a cross-valida-
tion framework where sentences used to test predictions minimally over-
lapped in their constituent words with the sentences used to train the
predictive mapping between model and fMRI data.

To map between each model and the fMRI data, we applied ridge
regression (Hoerl and Kennard, 1970) in a leave-one-sentence-out cross
validation framework. This was repeated for each model and participant.
Cross-validation iterated across the 240 sentences as follows. At each
cross-validation iteration, the data were split into the following: (1) A
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1. Evaluating the strength of model-
based predictions

InferSent(GloVe)
I . e

Correlation is repeated
comparing the predicted
sentence to each of the
240 fMRI sentence
recordings.

Large positive correlations yield high ranks
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Figure 4.

Anderson etal. e Cortical Encoding of Sentence-Level Meaning

2. Estimating the exclusive contribution
made by individual models

InferSent{GloVe)

EQSI)==semi
partial
corr

BoW prediction serves as a
control (and is regressed out
from InferSent's prediction)

NE, multiple models were
used as controls in all
analyses

BoW(GloVe)

[180 78 32 15] = rank([Rsp; Rsp, Rsp; ... Rspyyol)

Evaluation of predicted fMRI sentences. Predictions were evaluated using two metrics. Left, The rank metric provided a measure of how accurately the predicted fMRI representa-

tion reflected the original sentence recording, comparative to recordings of all of the other 239 mismatched sentences. Right, The semipartial rank metric controlled for the predictions made
by other models in evaluation. Specifically, before evaluating the prediction made by one model (InferSent above), the predictions made by other model(s) are regressed out from InferSent’s
prediction (in the above illustration BoW(GloVe) is regressed out). The residual is then compared with the original fMRI activation, and ranked relative to the other sentences. Both rank and
semipartial rank metrics were normalized to the range 0-1. For instance, if the score was 229, the normalized score was 0.95, computed as (229 — 1)/239.

test subset, formed from a single sentence (changing each iteration),
which was used to evaluate the predictive power of the model. (2) A
training subset, which was used to fit the predictive mapping between
each model and the fMRI data. The training subset was formed from all
sentences that did not contain any word in the test sentence other than
“the.” As a result of this stipulation, the number of sentences in the train-
ing set varied with each iteration (mean * SD, 214 = 17 sentences). (3)
A tuning subset. The tuning subset was used to estimate the “ideal” ridge
regression regularization parameter A at each cross-validation iteration
(as is described later in this section). The mapping associated with the
best A was used to predict the test sentence from 1. The tuning sentences
were the subset that remained after the training and testing sentences
had been selected (mean * SD, 25 * 17 sentences), and they could over-
lap in constituent words with both the training and test sentence. It
would have been preferable if there were no such overlap, but this would
have resulted in small training data splits for the current dataset.

At each cross-validation iteration, ridge regression was applied to the
training sentences to fit a many-to-one predictive mapping from the
multidimensional model to each single voxel. Before fitting the regres-
sion, both voxel activation and model feature values were normalized by
subtracting the mean across the training sentences, and dividing by the
SD (i.e., z scoring). Model and fMRI data for the tuning and test senten-
ces were likewise normalized according to same means and SDs that had
been computed on the training sentences. A separate ridge regression
was fit for each voxel and each of a series of regularization parameters
(A) used to counteract overfitting.

To estimate the ideal A at each cross-validation iteration, voxel acti-
vation for each of the tuning sentences was predicted using the regres-
sion mapping derived from each A. The mean prediction accuracy
across the tuning sentences was evaluated according to the rank scoring
procedure detailed in the following section (Fig. 4, left). The regression
mapping associated with the highest scoring A was selected to predict
the test sentence. The prediction accuracy for the test sentence was eval-
uated via the same rank scoring procedure.

For the cortex-level analysis, we set candidate A s to range across the
following: [1 lel le2 le3 le4 le5]. Because the “peak” selected A s were
on average (across iterations and participants) within the range lel to

le4 for each model, we believe a satisfactory fit was found in each case.
For the ROI analysis, we extended the range of candidate A s to the fol-
lowing: [1 1el 1e2 1e3 le4 1e5 1e6 le7 1e8] following pilot tests. The av-
erage “peak” A value (across iterations and participants) selected for the
different models across all ROIs was always within the range lel and
le6. This again suggested that a satisfactory fit was achieved for each
model.

Rank scoring prediction accuracy

To evaluate the predictions made by each model, we first computed
Pearson correlation between each predicted fMRI sentence (a vector of
activation values across voxels) and the original fMRI recording. Next,
we evaluated how the correlation coefficient ranked comparative to coef-
ficients computed between the predicted sentence and the original fMRI
recordings of each of the other 239 mismatched sentences (Fig. 4, left)
(Pereira et al., 2018). Under this setup, the ideal prediction would be
marked by a high positive correlation coefficient yielding a rank of 240.
The rank associated with the correctly matched sentence was subse-
quently normalized to the range 0-1, by subtracting 1 and dividing by
239. A final normalized rank score was assigned to each model as the
mean normalized rank across all 240 sentence predictions (one per each
cross-validation iteration). If there were no sentence-related signal in ei-
ther the fMRI data or the model, the expected score would be 0.5.

To further estimate the exclusive contribution that each model made
to predicting fMRI activation, we computed a “semipartial rank score”
as is illustrated in Figure 4 (right). This semipartial score complemented
the rank score, which risked obscuring whether or not different models
were predicting complementary information. For instance, two models
may obtain the same rank score by predicting different components of
the fMRI signal.

The semipartial rank score was estimated by computing the semipar-
tial correlation between the original fMRI recording of a sentence S, and
the representation of S predicted by one model (e.g., A) while controlling
for predictions of S made by the combination of other models (e.g., B, C,
D, and so on). Practically, the prediction of S made by A was regressed
on the prediction made by B, C, and D (using multiple regression). Then
the residual was computed, which reflected the pattern exclusively
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predicted by A, but not the other models. To quantify the exclusive pre-
diction accuracy, Pearson’s correlation between the residual and the
original fMRI sentence representation was computed. Then the residual
was compared with the original fMRI recordings of each of the other
239 mismatched sentences using Pearson correlation. The correlation
coefficients were then ranked, and the rank associated with sentence S
was normalized to the range 0-1. A final normalized semipartial rank
score was assigned as the mean normalized rank across all 240 sentence
predictions. If there were no signal exclusive to the test model (here A),
then the expected semipartial score would be 0.5.

We note that there could have been other ways to approach evaluat-
ing the unique contribution of individual models to predicting variance
(in particular, see the variance partitioning approach of de Heer et al.,
2017). For instance, sentence vectors associated with different models
could have been stacked together to form one large composite predictor
in each multiple regression. For the case at hand, the computational
overheads associated with fitting the regression to a composite of multi-
ple models with thousands of features and potentially repeating this to
find A combinations for the constituent models made this approach
prohibitive.

Voxel selection and averaging sentence replicates

Because not all fMRI voxels contain informative signal, we estimated
which ones were likely to be informative using a commonly used “stabil-
ity” strategy (e.g., Mitchell et al., 2008; Chang et al., 2011; Pereira et al,,
2013; Anderson et al., 2015, 2017b, 2019b; J. Wang et al., 2017; Yang et
al., 2017). At each cross-validation iteration, we took the subset of train-
ing sentences and estimated which voxels were informative by taking
each of the 12 (or 6) fMRI runs through training sentences and voxel-
wise correlating each unique pair of runs together. For the 10 partici-
pants with 12 runs, this left 66 pairwise correlation coefficients per voxel;
and for the 4 participants with 6 runs, this left 15 pairwise correlation
coefficients per voxel. A single stability score was assigned to each voxel
by taking the mean of these (66 or 15) correlation coefficients. We
selected and then segmented the n voxels with the highest correlation
coefficients to enter the voxelwise encoding modeling analysis, while dis-
carding the other voxels.

The value for » differed for our initial analysis that sampled voxels
across the entire cortex where n was 500 to echo the number chosen in
Mitchell et al.’s (2008) seminal analysis, and for our ROI analysis (where
n was 50 within each ROI, maintaining consistency with a previous
study: Anderson et al., 2019b). For the cortex-level analysis, we excluded
the occipital pole and calcarine sulcus ROIs (ctx_lh_Pole_occipital,
ctx_rh_Pole_occipital, ctx_lh S calcarine, ctx_rh_S_calcarine) from
voxel selection to cut down on signal associated with early visual proc-
essing of the sentence stimuli (which we were not interested in testing).

Both numbers of voxels selected (500 and 50) are ultimately arbi-
trary; however, we are confident that this particular parameterization
has little bearing on the pattern of critical results we present here. For
instance, in the current article, we often obtain similar patterns of results
across models whether looking at 50 voxels within an individual ROIs or
500 voxels across the brain. Likewise, in previous work, we have
observed model-based results to be robust when different numbers of
voxels are explicitly tested (Anderson et al., 2019b).

Following voxel selection, and before regression, fMRI activation pat-
terns for the 12 (or 6) replicates of the same sentence were voxelwise
averaged. This produced a single fMRI representation for each of the
240 sentences for each of the 14 participants.

Cross-participant similarity-based encoding

To provide an estimate of how much signal in each participant’s fMRI
data had not been predicted by the models, we computed a cross-partici-
pant analysis. This analysis used fMRI data from other participants as a
basis for predicting sentence representations in the test participant. This
followed the reasoning that, in the general case, commonalities in repre-
sentation estimated across a group will provide the strongest estimate of
a separate individual, assuming a sufficiently sized group, and the lack of
personalized models (see also Anderson et al., 2020).
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To perform cross-participant encoding, we applied a representational
similarity-based approach to sidestep problems associated with struc-
tural and functional misalignments across participants’ fMRI data (that
persist despite anatomic normalization). This is a simpler and more ap-
proximate alternative to hyperalignment (Haxby et al., 2011) or stacking
fMRI data across multiple participants to use as predictors in a large
multiple regression (which rapidly becomes computationally prohibi-
tive). Nonetheless, we have found it to be practically effective in related
work (Anderson et al., 2016, 2019b) as we do again here.

Cross-participant similarity-based encoding (Fig. 5) uses the array of
similarities computed between a test sentence, and a selection of training
sentences from one participant’s fMRI data as the basis for predicting
the representation of the test sentence in a different participant (from
their corresponding training sentences). Similarities were 8 coefficients
arising from the regression of the test sentence fMRI vector on each of
the training sentences. Thus, if there are 230 training sentences,
there were 230 B coefficients. The fMRI representation of the test
sentence in a new participant was predicted via a weighted average
of the second participant’s 230 training sentences, where the
weights were the original participants’ 8 coefficients. Group-level
commonalities were estimated by taking the mean of B coefficients
across multiple participants. For instance, the pointwise average of
the 230 B coefficients across Participants 2-14 was applied to
encode the test sentence in Participant 1.

Tests of statistical significance

The accuracy that each model could predict fMRI representations of sen-
tences (whether at cortex or ROI level) was scored at an individual par-
ticipant level, using the normalized rank score and normalized
semipartial rank score metrics described in Rank scoring prediction ac-
curacy and illustrated in Figure 4. Both rank scores ranged from 0 to 1,
with 0.5 representing the theoretical chance level (i.e., the result to be
expected if the analysis were repeated with models and fMRI data that
contained no correlated signal).

To provide an individual participant-level estimate of the statistical
significance of the rank scores generated by each model, we ran permu-
tation tests. Model sentence vectors were randomly shuffled so that they
were no longer aligned with their sentence labels (e.g., such that the rep-
resentation of “meaning” was misaligned with the text label). The fMRI
data remained untouched. Normalized rank scores were computed with
the shuffled sentences. This process was repeated 100 times with differ-
ent random shuffles to supply a null distribution of scores. The 101
scores (associated with shuffled and unshuffled models) were ranked in
descending order, and a p-value was computed as the rank associated
with the unshuffled score divided by 101.

To test for the generality of results across participants, nonparamet-
ric signed ranks tests were applied. To test for differences in prediction
accuracy between models, signed rank tests were applied to the 14 partic-
ipants’ normalized rank scores arising from each model. To test whether
individual models could exclusively predict fMRI signal components
that were not predicted by other models, normalized semipartial rank
scores for the 14 participants were compared with the chance level of 0.5
using one-sample signed rank tests.

Multiple comparisons were corrected for as indicated in the Results
using false discovery rate (FDR) (Benjamini and Hochberg, 1995).

Data and code availability
Preprocessed fMRI data and MATLAB version 2020a code to compute
all analyses are available at https://osf.io/7uvmg]/.

Language network ROIs were downloaded from https://evlab.mit.
edu/funcloc/, selecting the download option for “A subset of the original
parcels from Fedorenko et al. (2010) which include the 8 parcels in the
frontal and temporal lobe” and [“... flipped onto the RH”].

Pretrained GloVe was downloaded from https://nlp.stanford.edu/
projects/glove.

Pretrained InferSent was downloaded from https://github.com/
facebookresearch/InferSent.

Pretrained ELMo was downloaded from AllenNLP: https://allennlp.
org/elmo.


https://osf.io/7uvmg/
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https://evlab.mit.edu/funcloc/
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Using cross-participant, similarity-based encoding to predict the fMRI representation of a sentence for Participant 1, from Participant 2's data. This approach was used to estimate

an upper bound on prediction accuracy and reveal signal that had not been predicted by the models (when the weight vectors W were averaged across participants).

Pretrained BERT was downloaded from https://huggingface.co/
transformers/pretrained_models.html. We selected the “bert-large-
uncased” implementation, run under PyTorch 1.6.0.

Results

fMRI data reflect propositional sentence-level semantics
encoded by InferSent

To first establish how accurately fMRI activation could be pre-
dicted by InferSent, the three GloVe-baseline models, and the
grammatical structure model, we computed normalized rank
scores (Fig. 4, left) for each model and participant in a cortex-

level analysis on 500 stable voxels (for a neuroanatomical illustra-
tion of the voxels, see Fig. 6, right). All models predicted fMRI
sentence representations at accuracies that were significantly
greater than chance level (permutation-based p values were 0.01
for each model and participant, with 100 permutations).
Comparative results for the different models are illustrated in
Figure 6. From qualitative visual inspection of Figure 6 (top left),
it is clear that InferSent yielded the strongest rank scores, followed
by Seq(GloVe), Gramm(GloVe), BoW(GloVe), and Grammar.
This was supported by the results of two-tailed signed rank tests
that compared scores between model pairs (results shown in Fig.
6, top left).


https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Figure 6.  fMRI activation pattems reflect propositional sentence-level semantics encoded by InferSent. Results correspond

to the 500 most stable voxels per participant, reselected across the cortex at each cross-validation iteration (right). Left col-
umn displays the critical results. Top left bar plot represents that normalized rank scores associated with InferSent were
greater than each of the other models. Top right bar plot, InferSent predicted components of fMRI activation that could not
be predicted by the other models. Bar heights are mean scores across the 14 participants. Error bars indicate SEM. The Char
stats and Word overlay models were included as controls in all semipartial rank score analyses but are not illustrated
to simplify the display and are later included in Figure 9. A complete listing of statistical test values for the two-
tailed signed rank tests (top left) and for one-sample signed rank tests (bottom left) is in Extended Data Figures 6-

1 and 6-2, respectively.

To estimate whether InferSent could exclusively predict
components of sentence activation in the fMRI data that had
not been predicted by the combination of Seq(GloVe),
Gramm(GloVe), BoW(GloVe), Grammar, and the visual
appearance models (Char stats and Word overlay), we com-
puted normalized semipartial rank scores (Fig. 4, right). This
analysis was undertaken on the same 500 stable voxels as the
previous rank score analysis (Fig. 6, right). Results for the
different models are illustrated in Figure 6 (bottom left) and
revealed that InferSent could predict components of activa-
tion in sentence-level fMRI data that could not be predicted
by any of the other models (mean * SD, semipartial rank
scores were 0.065 = 0.035). Statistical significance was eval-
uated using one-sample signed rank tests to evaluate whether
normalized semipartial rank scores were greater than the
chance level of 0.5. For InferSent, this was found to be signif-
icant (W =105, p = 0.0003, one-tailed, FDR-corrected across the
six models). We also detected evidence that Seq(GloVe), Bow
(GloVe), and Grammar, but not Gramm(GloVe), could exclusively
predict components of fMRI activation, albeit with lower semipar-
tial rank scores (Fig. 6, bottom left).

These two analyses provided evidence that propositional sen-
tence-level semantic representations can be detected in fMRI
data, but did not indicate whether sentence-level representations
were anatomically localized to a particular subset of the 500 vox-
els analyzed, as opposed to being distributed across multiple
cortical sites.
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Multiple cortical regions encode
propositional sentence-level semantics
To estimate whether different regions of a
distributed cortical language network
locally encoded propositional sentence-
level semantics, we evaluated voxelwise
encoding models on regional fMRI activa-
tion. We repeated the analyses of the pre-
vious section and computed normalized
rank scores and semipartial normalized
rank scores (Fig. 4) for each participant
and model on each of the 16 language
network ROIs. Results are displayed in
Figures 7 and 8, respectively, and ROI-
level results broadly echo the outcomes of
the cortex-level analysis (Fig. 6). To sim-
plify display, we did not illustrate rank
scores for the visual appearance models in
Figure 7, but we list them in Table 2.

As illustrated in Figure 7, InferSent
yielded significantly stronger rank scores
than all four of the baseline models in 7 of
8 left hemispheric ROIs. These included
anterior, mid, and posterior regions of the
temporal lobe, inferior parietal cortex,
and inferior frontal gyrus, but excluded
the mid-frontal ROI (LROI 8). The same
effect was observed in 2 of 8 right hemi-
spheric ROIs (both right inferior frontal:
RROI 4 and 6). We note here that the
rank scores for right hemispheric ROIs
tended to be visibly weaker than their left
hemispheric  counterparts, suggesting
lower signal and potentially less power to
discern differences between models.
Statistical significance was evaluated with
two-tailed signed rank tests that com-
pared InferSent with each of the four baseline models. These
four tests were repeated for each ROI, and the entire set of p val-
ues were FDR-corrected. All test statistics are listed in full in
Extended Data Figure 7-1.

As illustrated in Figure 8, InferSent exclusively predicted
components of fMRI activation in multiple regions of the
language network that were not predicted by: Seq(GloVe),
Gramm(GloVe), BoW(GloVe), Grammar, Char stats, and
Word overlay when combined together. Specifically, in the
left hemisphere, semipartial rank scores yielded by InferSent
were significantly greater than chance level in 7 of 8 tempo-
ral, inferior parietal, and inferior temporal ROIs (one-sample
signed rank tests against 0.5, one-tailed, FDR-corrected).
These were the same left hemispheric ROIs for which
InferSent previously yielded significantly stronger rank
scores than the four baseline models (Fig. 7). In the right
hemisphere, the same effect was observed in 5 of 8 ROIs,
which included inferior frontal cortex (RROI 4 and 6 echoing
Fig. 7) and additionally regions of anterior and posterior
temporal cortex. Other noteworthy contributions to predic-
tion came from the Grammar baseline model in mid frontal
ROI (LROI 8). Also, Grammar, Bow(GloVe) and Seq(GloVe)
contributed to predicting LROI 1 (posterior temporal lobe).
As we considered these baseline model results to be periph-
eral to our main aims, they are not discussed further. p values
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Regions of temporal, inferior parietal cortex, and inferior frontal cortex were more accurately predicted by InferSent than the four baseline models. Bar heights illustrate the mean

normalized rank scores across the 14 participants. Error bars indicate SEM. The anatomic location of the ROIs is illustrated at the top: 50 voxels were selected within each ROI for analysis at
each cross-validation iteration (see Table 1). InferSent yielded significantly greater normalized rank scores than all four of the baseline models in 9 of 16 ROIs (). A complete listing of statistical
test values for the two-tailed signed rank tests used to compare InferSent to rank scores derived from the baseline models is in Extended Data Figure 7-1.

were FDR-corrected across all models and ROIs. All test sta-
tistics are listed in full in Extended Data Figure 8-1.

Collectively, these results provided evidence that propositio-
nal sentence-level representations are encoded within and across
multiple sites spanning temporal, parietal, and frontal cortex,
and not localized to any particular brain region.

Different deep artificial neural network sentence model
predicted fMRI data with similar accuracy

To place the current results acquired using InferSent into a
broader landscape of other deep network approaches, we

explored how cortex-level predictions made by InferSent
compared with ELMo and BERT. We were interested to see
whether ELMo and BERT’s strong NLP performance and
added complexity carried over to strong fMRI prediction
accuracy.

To recap, ELMo has three layers: L1 is the representation
derived from a character-based convolutional network, and L2 and
L3 are contextualized bidirectional LSTM-based representations.
We analyzed each layer separately, and all layers concatenated to-
gether (L1,L2,L3). BERT has 24 layers reflecting contextualized rep-
resentations generated by self-attention-based encoder blocks. We
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scores across the 14 participants. Error bars indicate SEM. The anatomic location of the ROIs is illustrated at the top: 50 voxels were selected within each ROI for analysis at each cross-validation
iteration (see Table 1). InferSent predicted components of fMRI sentence representations that were not predicted by the other models in 12 of 16 ROIs (). The Char stats and Word overlay
models were included as controls in all of the semipartial analyses, but the corresponding rank scores are not illustrated here to simplify display. A complete listing of statistical test values for
the one-tailed sample signed rank tests used to test semipartial rank scores against chance level is in Extended Data Figure 8-1.

analyzed each of BERT’s 24 layers separately because regression on Normalized rank scores for ELMo and BERT are presented
all 24 layers concatenated together or on combinations of fewer  alongside all other approaches tested in this article in Figure 9.
layers would have been computationally prohibitive at this stage of ~ InferSent, ELMo (L2 or L3 or L1,L2,L3), and BERT’s best per-
investigation. forming layers all yielded broadly similar normalized rank
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Table 2. Normalized rank score listings for the visual appearance models, to
support Figure 7°

ROI Char stats Word overlay InferSent(GloVe)
LROI' 0.67 = 0.03 0.66 = 0.03 0.70 = 0.06
LROI 2 0.63 = 0.03 0.63 £ 0.03 0.66 = 0.06
LROI 3 0.58 = 0.03 0.58 £ 0.03 0.59 = 0.06
LROI 4 0.63 = 0.04 0.62 = 0.03 0.65 = 0.07
LROI'5 0.60 = 0.03 0.59 = 0.03 0.65 = 0.06
LROI 6 0.57 £ 0.03 0.56 = 0.03 0.60 = 0.07
LROI 7 0.63 = 0.02 0.62 = 0.02 0.63 = 0.07
LROI 8 0.66 = 0.03 0.64 = 0.03 0.63 = 0.03
RROI 1 0.59 = 0.05 0.58 = 0.04 0.59 = 0.07
RROI 2 0.61 = 0.03 0.60 = 0.03 0.60 = 0.06
RROI 3 0.55 = 0.04 0.55 = 0.04 0.55 = 0.05
RROI 4 0.57 = 0.04 0.57 *0.03 0.57 = 0.06
RROI'5 0.56 = 0.05 0.56 = 0.04 0.58 = 0.06
RROI 6 0.54 = 0.03 0.53 £ 0.03 0.56 == 0.06
RROI 7 0.63 = 0.05 0.63 = 0.04 0.59 = 0.05
RROI 8 0.58 = 0.04 0.58 = 0.03 0.56 = 0.03

“Data are mean == SD. Scores for InferSent(GloVe) are illustrated in Figure 7 and are provided again here as
a reference point. Scores for Char stats and Word overlay are quite high throughout the language network.
This presumably reflects orthographic information that is distributed across the cortex as well as spurious
correlations with the semantic models observed in Figure 3.

scores. Mean * SD scores across participants were as follows:
InferSent, 0.747 = 0.056; ELMo L1, 0.713 = 0.060; ELMo L2,
0.751 £0.058; ELMo L3, 0.748 £0.056; ELMo LI1,L2,L3,
0.754 = 0.059. BERT’s strongest mean rank scores were derived
from mid-level layers as follows: L10, 0.758 = 0.052; L11,
0.755*+0.053; L12, 0.761 =£0.053; L13, 0.758 £0.053; L14,
0.757 = 0.055. BERT’s earlier layers yielded scores of ~0.74,
while scores for later layers tailed off to 0.70.

Signed ranks tests detected no significant differences between
InferSent and ELMo L1,L2,L3 (W =79, p=0.104, uncorrected).
Signed ranks tests between InferSent and each layer of BERT
revealed a significant difference at L12 only when results were
not corrected for multiple comparisons (BERT > InferSent,
W =88, p=0.025 uncorrected) and at L18-L24 (InferSent >
BERT all W>99 and all p <0.002 uncorrected). Signed ranks
tests between ELMo and BERT revealed significant differences at
L1 to L3 and L17 to L24 (ELMo > BERT, all W > 96 and all
p <0.004, uncorrected).

This section has revealed that, for the current fMRI dataset,
there were relatively mild differences in prediction accuracy
between InferSent, ELMo, and BERT. BERT L12 yielded the
highest prediction accuracy of all, but this was not significantly
more accurate than ELMo or InferSent. We did not explicitly test
whether InferSent, ELMo, and BERT made independent contri-
butions to predicting fMRI data because these could be because
of a mixture of uncontrolled differences in network architecture,
training paradigms, training data, word/subword inputs, and so
on. However, as a byproduct of an analysis performed in the
next section, we did uncover evidence that each deep network
approach could predict different (uninterpretable) components
of fMRI signal (Fig. 9, top right bar plot).

The experiential attribute model revealed semantic signal
that was not predicted by deep network sentence models

To estimate how much room there is for improvement in com-
putationally modeling the current fMRI data, we ran two addi-
tional analyses. The first leveraged an experiential attribute
model (Binder et al., 2016), which was designed to approximate
semantic knowledge acquired from sensory, motor, cognitive,
interoceptive, and affective experience, and thus potentially
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capture information that is not available from the text corpora
used in deep network training.

Rank scores for Seq(Attribute), comparative to all other mod-
els are displayed in Figure 9 (left). The mean * SD score for Seq
(Attribute) was 0.722 * 0.045, which was similar in magnitude
to Seq(GloVe) (0.717 £ 0.0741) and significantly lower than the
deep network approaches (see signed rank tests in Fig. 9). To esti-
mate whether Seq(Attribute) predicted fMRI signal components
that were not captured by the deep networks, we estimated
semipartial rank scores for Seq(Attribute) when controlling
for InferSent, ELMo L1,L2,L3, BERT L12, Grammar, Char
stats, and Word overlay. The results are illustrated in Figure
9 (top right bar plot). Mean * SD semipartial rank scores for
Seq(Attribute) were 0.054 £ 0.026, which was significantly
greater than the chance level of 0.5 (W =105, p = 0.0001,
one-tailed, FDR-corrected across all models).

These results provided evidence that there was semantic sig-
nal in the fMRI data that had not been predicted by the deep net-
work models. This may reflect knowledge that was acquired
through nonlinguistic experience of the word, as opposed to
from text and language (Anderson et al., 2019b).

Cross-participant encoding revealed fMRI signal that was
not predicted by any model

To estimate whether any fMRI signal was left unpredicted by the
models regardless of its nature (semantic or otherwise), we
applied cross-participant encoding. To recap, cross-participant
encoding assumes that, in the absence of a personalized model
(e.g., Anderson et al., 2020) and when armed with a sufficiently
composed participant group, the best predictor of fMRI activa-
tion for an unseen sentence in an individual will be derived from
fMRI activation for that sentence in a group of other individuals.

We first computed rank scores using cross-participant simi-
larity-based encoding at the cortex level, which yielded a
mean * SD normalized rank score of 0.793 = 0.030, which was
significantly greater than all other models (Fig. 9, bottom left; for
signed rank test outcomes, see Extended Data Fig. 9-1). To reveal
signal that was exclusively predicted by the cross-participant
approach, we computed semipartial rank scores in an analysis
that included InferSent, ELMo L1, ELMo LI1,L2,L3, Seq
(Attribute), Grammar, Char stats, and Word overlay. The results
are illustrated in Figure 9 (bottom right bar plot). Cross-partici-
pant semipartial rank scores were comparatively high
(0.153 = 0.030). Semipartial rank scores for the other models
were low (all <0.033), but some were still >0, which suggests
that the current cross-participant approach was an underesti-
mate of the true upper bound prediction accuracy.

These results provided evidence that there was substantial
fMRI signal that had not been predicted by the models and,
more broadly, that there is room for improvement in building
sentence models to predict the current fMRI data. In addition,
this section has suggested that the current cross-participant pre-
dictions have some room for improvement which might come
from including more participants or applying more sophisticated
strategies to integrate data across individuals (e.g., Haxby et al,,
2011).

Discussion

The current study has revealed evidence that propositional sen-
tence-level meaning is encoded in fMRI activation within and
across regions of a previously identified cortical language net-
work (Fedorenko et al., 2010). To model sentence-level meaning,
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InferSent, ELMo, and BERT yielded similar accuracy predictions, and the experiential attribute model and cross-participant encoding revealed unpredicted fMRI

signal. Results correspond to the 500 most stable voxels per participant (top left). Bottom left, Normalized rank scores obtained for the full complement of predictive
approaches excluding BERT. Mean rank scores for BERT are listed at the top right to simplify display (because BERT has 24 layers). Right, Semipartial rank scores for a selec-
tion of models. Top right, Semipartial scores when the cross-participant encoding approach was excluded. Bottom right, Comparative semipartial scores when cross-partici-
pant encoding was included and semipartial scores for the models were expected to dwindle toward 0.5 (because the cross-participant approach in principle accounts for
group-level commonalities in neural signal). Bar heights and error bars represent mean and SEM, respectively. Circles represent individual participants. A complete listing of
statistical test values for the two-tailed signed rank tests (left bar plot) is in Extended Data Figure 9-1. A complete listing of test values for the one-sample signed rank tests
in the top and bottom right bar plots is in Extended Data Figures 9-2 and 9-3, respectively.

we used InferSent, a recurrent nonlinear deep neural network
trained to combine sequences of word-level semantic vectors
into unified propositional sentence-level representations. Our
results showed that InferSent exclusively predicted components
of activation in fMRI data that was unaccounted for by baseline
models that superposed and/or segregated word-level semantic
vectors. We first discuss what aspects of sentence-level semantics
that InferSent may have captured that the other models did not,
and how this information is distributed across the cortex.

We use the term “propositional” here to refer to sentence-
level information that is required to compute entailment rela-
tionships. In this sense, the propositional meaning of a sentence
combines the meanings of its component words according to
their functional roles in the sentence structure. That is, syntacti-
cal information must be inferred and integrated with lexical-
semantic information, at least to some extent. The precise nature

of the propositional information encoded by InferSent is how-
ever challenging to pin down, and indeed explaining deep net-
work representations is notoriously difficult (for an examination
of the information captured by InferSent and related approaches,
see also Conneau et al., 2018). In part, this is because InferSent
had opportunities to exploit several interacting factors to build
propositional sentence representations. We outline these, but
also stress that future work will be necessary to establish the im-
portance of each.

Word sense selection

Behavioral experiments provide evidence that sentence
comprehension is characterized by the initial activation of
context-independent word representations, such that mul-
tiple senses of words, such as “bat,” are jointly activated,
followed later by sense selection when the appropriate
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meaning is specified by contextual information (e.g.,
Swinney, 1979; Tanenhaus et al., 1979; Till et al., 1988). All
of the current baseline models had no capacity to select/
deselect appropriate/inappropriate word senses. However,
InferSent’s LSTM architecture does afford this opportunity.
Specifically, at each network cycle, the input gate nonli-
nearly filters the incoming word (GloVe) for features to
incorporate into the forthcoming sentence representation,
guided by the previous “sentence-so-far” output (that is
recurrently fed back). Likewise, “forgettable” features are
nonlinearly filtered away from the cell memory that stores
an internal sentence representation. Thus, both gating
operations could deselect semantic features associated with
inappropriate word senses and perform sense selection.

Emphasizing words dominating sentence meaning
Electrophysiological studies have established that neural
responses to different words in sentences vary considerably,
with the strength of response roughly proportional to how
unexpected a word is in the context (Kutas and Federmeier,
2011). Thus, “The dentist brushed the boy’s tree” would
elicit a greater electrophysiological response (the so-called
N400) than if the ending had been “teeth.” It is reasonable
to consider that fMRI activation associated with semantic
features of unexpected words may likewise be exaggerated.
It is also reasonable to consider that function words empha-
size particular content words (“the bat” rather than “bat” or
“a bat”). The current baseline models had no capacity to
distinguish and weight unexpected words, nor leverage
function words to adapt content word meaning. However,
such weightings could have been enabled by InferSent’s
LSTM. Specifically, the input gate performs a weighted inte-
gration of the new GloVe input and the previous sentence-
so-far output (recurrently fed-back). Thus, a combination
of inhibitory weights on features of the sentence-so-far, and
excitatory weights on the new GloVe input would zero out
recurring features across words and emphasize novel unex-
pected information in the new input.

Word order and thematic role assignment

The subject-verb-object word order of the English language is
critical for understanding thematic role assignments (e.g., agent
and patient) and thus sentence comprehension. Recent studies
have provided evidence that agent and patient can be spatially
distinguished in fMRI activation (Frankland and Greene, 2015; J.
Wang et al., 2016). InferSent likewise has some capacity to map
words to different segments of sentence-level vectors. Indeed,
relative word order is encoded on each iteration when the new
GloVe input word is concatenated with the previous sentence-
so-far output (recurrently looped back).

How the results relate to other brain imaging studies

The current results have provided evidence that propositional
sentence-level semantic representations are distributed through-
out a cortical language network, rather than being localized
within any particular brain region (e.g., Baron and Osherson,
2011; Bemis and Pylkkénen, 2011; Westerlund and Pylkkénen,
2014; Frankland and Greene, 2015; Zhang and Pylkkdnen, 2015).
This echoes Fedorenko et al. (2016) and Nelson et al. (2017) who
revealed electrocorticographic signals associated with sentence
construction arising concurrently in distributed brain regions,
and Lyu et al. (2019) who detected contextualized noun repre-
sentations in EEG/MEG recordings. Results extend previous
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fMRI studies that have revealed distributed neural correlates of
semantic features (Huth et al., 2016; Anderson et al., 2017a,
2019b; Yang et al,, 2017; Pereira et al., 2018), syntax (Blank et al.,
2016; Fedorenko et al., 2020); and words with different grammat-
ical roles (Anderson et al., 2019a); but not whether activation
reflected sentence-level meaning. Finally, our results comple-
ment work that has used cross-participant comparisons to reveal
distributed neural correlates of narrative comprehension (Honey
et al,, 2012) and how temporal context is encoded (e.g., Chien
and Honey, 2020); and also other studies that have begun to use
deep network-based models to predict contextualized semantic
responses in neural data (Jain and Huth, 2018; Gauthier and
Levy, 2019; Sun et al., 2019; Toneva and Wehbe, 2019; Goldstein
et al., 2020; Heilbron et al., 2020; Schrimpf et al., 2020), but not
revealed the distributed cortical encoding of propositional sen-
tence-level meaning.

Together with the above studies, the current results suggest
that lateral temporal, inferior parietal, and inferior frontal corti-
ces comprehensively encode propositional sentence representa-
tions that integrate across multiple words and semantic features.
However, because of the slow sample rate of fMRI, the time
course over which semantic representations arose in different
regions remains unclear. Thus, we are unable to estimate
whether semantic representations were locally assembled in a
particular brain region, such as the anterior temporal lobe and
subsequently channeled to different cortical regions; or alterna-
tively, whether sentence-level representations were constructed
in parallel across multiple interacting network hubs. Future work
leveraging electrocorticography and EEG/MEG will be necessary
to expose the spatiotemporal time course of semantic composi-
tion (e.g., Fedorenko et al,, 2016; Fyshe et al., 2019; Lyu et al,,
2019; Toneva and Wehbe, 2019; Caucheteux and King, 2020;
Goldstein et al., 2020; Heilbron et al, 2020; Lopopolo et al.,
2020).

Similarities and differences between the deep artificial neural
network approaches

In follow-up analyses, we placed InferSent’s results into the con-
text of two newer deep network approaches: ELMo and BERT.
This was to find out how high performance in applied NLP
translates to fMRI prediction, and whether the added complexity
of the newer deep networks conferred a particular advantage
here. The results were equivocal. There were slight differences in
fMRI prediction accuracy between the three deep networks, but
they all yielded stronger results than the baselines. This might
partially reflect representational similarities that the different
approaches converged on. Such putative similarities could reflect
priors that are incidentally encoded by different deep net-
work architectures regardless of training (Conneau et al.,
2018; Wieting and Kiela, 2019) and/or that different semi-
supervised/supervised training paradigms produce similar
representations. Irrespective, we consider each approach
tested here to provide the basis for approximating proposi-
tional meaning because ELMo and BERT have both contrib-
uted to models breaking SNLI benchmarks (https://
paperswithcode.com/sota/natural-language-inference-on-
snli) and InferSent’s LSTM architecture and training were
selected/optimized for SNLI.

We are also careful to point out that results for different deep
networks, and their biological plausibility may vary with the
brain-imaging task scanned and with fine-tuned training on par-
ticular NLP tasks. For instance, architecturally, transformers
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might better capture knowledge assimilation associated with
reading a book when one can flip pages (and one’s attention)
back and forth to integrate information across long-term
dependencies. Conversely, recurrent networks could be more
biologically plausible models of speech comprehension, where
words are delivered in serial order (see also Merkx and Frank,
2020). Training on next-word prediction could be particularly
important for building biologically plausible models of both
reading and speech comprehension (Goldstein et al., 2020;
Heilbron et al., 2020; Schrimpf et al., 2020), given the extensive
evidence that prediction underpins biological language compre-
hension (Kuperberg and Jaeger, 2016).

Utility of incorporating supra-textual information into
semantic models

The study has also emphasized the utility of incorporating supra-
textual knowledge into semantic models to explain brain activa-
tion. This is in two respects: (1) in corroborating previous find-
ings that modeling nonlinguistic “experiential knowledge”
(Anderson et al., 2013, 2015, 2017b, 2019a; Bulat et al., 2017;
Abnar et al., 2018; X. Wang et al.,, 2018; Djokic et al., 2020) can
help predict brain activation that cannot fully be explained by
text-based language models; and (2) by incorporating human
“expert” knowledge on natural language inferences (Bowman et
al,, 2015) to supervise the InferSent training procedure.

Conclusion

In conclusion, the current study has provided evidence that a dis-
tributed cortical network encodes propositional representations
of sentence-level meaning. This suggests that unified, integrated
representations of sentence meaning are locally encoded in fMRI
within multiple brain regions rather than being confined to a
particular site. The study has also demonstrated the utility of
deep network approaches to capture components of semantic in-
formation that have yet to be explained by any other method.
However, despite combining state-of-the-art computational and
behavioral modeling methods, we have revealed that a substan-
tial fraction of fMRI signal remains unexplained. In going for-
ward, we contend that artificial deep neural network approaches
that integrate multimodal information will play a vital role to
play in explaining this biological signal.
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